Tomographic diffractive microscopy: principles and applications

Olivier Haeberlé

MiFoBio 2018 Seignosse - France, October 5-12, 2018

Intensity Microscopy

Dark-field
Oblique illumination
Rheinberg illumination
Hoffman modulation
Polarized microscopy
Phase contrast (Zernike)
Differential Phase Contrast (Nomarski)
Ultramicroscope (Siedentopf & Zsigmondy)

- :-) Some control of the illumination
- :-) A certain comprehension of the light specimen interaction phenomenon
- :-(Inherently 2-D

Phase Microscopy

:-(Usually, one records intensity only images

Gabor Holography
Phase Stepping Holography
Off-Axis Holography
Front Wave Analyser

=> One can (now easily) measure amplitude and phase of the diffracted field

Principle of Holography

$$\mathcal{I}(x,y) = \underbrace{|\mathbf{u}(x,y)|^2 + |\mathbf{u}_r(x,y)|^2}_{0-\text{Order}} + \underbrace{\mathbf{u}(x,y)\mathbf{u}_r^*(x,y)}_{0-\text{Order}} + \underbrace{\mathbf{u}^*(x,y)\mathbf{u}_r^*(x,y)}_{0-\text{Order}} + \underbrace{\mathbf{u}$$

How to get the object wave (order 1) from the fringe pattern?

Nobel Prize 1971 Physics **Denis Gabor**

""for his invention and development of the holographic method".".

Phase Stepping Holography

4 holograms, with 4 different phases of the reference wave

$$\mathcal{I}_k(x,y) = |u(x,y)|^2 + |\mathbf{u}_r(x,y)|^2 + u(x,y)u_r^*(x,y)e^{-jk\pi/2} + u^*(x,y)\mathbf{u}_r(x,y)e^{jk\pi/2}$$

$$\mu = +u(x,y)u_r^*(x,y)$$

<u>10</u>

$$\mathcal{I}_{0} = |\mathbf{u}(x,y)|^{2} + |\mathbf{u}_{r}(x,y)|^{2} + \mu + \mu^{*}$$

$$\mathcal{I}_{1} = |\mathbf{u}(x,y)|^{2} + |\mathbf{u}_{r}(x,y)|^{2} + -j\mu + j\mu^{*}$$

$$\mathcal{I}_{2} = |\mathbf{u}(x,y)|^{2} + |\mathbf{u}_{r}(x,y)|^{2} - \mu - \mu^{*}$$

$$\mathcal{I}_{3} = |\mathbf{u}(x,y)|^{2} + |\mathbf{u}_{r}(x,y)|^{2} + j\mu - j\mu^{*}$$

One obtains:

$$\mathcal{I}_{0} - \mathcal{I}_{2} = 4\Re(\mu) \\
\mathcal{I}_{3} - \mathcal{I}_{1} = 4j\Im(\mu)$$

$$\boldsymbol{u} = \frac{(\mathcal{I}_{0} - \mathcal{I}_{2}) + (\mathcal{I}_{3} - \mathcal{I}_{1})}{4\boldsymbol{u}_{r}}$$

Off-Axis Holography

The reference wave is angularly shifted => périodic modulation

Fourier transform of the hologram splits the different orders:

Spatial filtering: selection of order 1

Commercial DHM

Wavefront Analyser

P. Bon, et al., Opt. Expr. 17, p. 13080 (2009)

Holographic Microscopy

Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy

B. Rappaz, et al.,

Opt. Express 13 (23), 9361-9373 (2005)

Coherent Light Diffraction

Weakly diffracting/diffusing/absorbing object 1st Born approximation
The diffracted wave is interpreted as a part of the 3-D Fourier 3D transform of <n>

Semi-transparent object reconstruction from holographic data E. Wolf, Opt. Comm. 1, p. 153 (1969)

Image Space / Fourier space

Spatial domain

Frequency domain

$$K_s = K_i = 2\pi/\lambda$$
 $K_o = K_s - K_i$
 $K_o = K_s - K_i$

Objective numerical aperture ⇒ Limitation of the detection angle

Holographic Miroscopy: Results

Limited 3-D resolution

Profilometry

Integral measurements

Illumination Control: Consequences

A radical solution:

1 unique illumination direction!

Cellule CD34 - Image Georges Jung, Laboratoire d'Hématologie Centre Hospitalier Régional Emile Muller - Mulhouse

Tomography by Illumination Rotation

- Large number of angles
- ⇒ Extended and filled frequency support
- Objective numerical aperture ⇒ Limitation of the detection angle
- Condenser numerical aperture ⇒ Limitation of the illumination angle

Tomographic Microscopy: Transmission

Holographic microscopy and diffractive microtomography of transparent samples, M. Debailleul, *et al.*, Meas. Sci. Technol. **19**, 074009 (2008)

Object Reconstruction

Holography / Tomography

Carbon Mesh

High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples

M. Debailleul, et al., Opt. Lett. 34, p. 79 (2009)

Tomography => Index of Refraction

Epithelial cells

Indice Real part

Indice Imaginary part

High resolution tomographic diffractive microscopy of biological samples M. Sarmis, et al., J. Biophotonics 3, p. 462 (2010)

Tomography => Index of Refraction

Granulocytes

Refraction

Absorption

False colour rendering:

Red: absorption Blue: refraction

Workshop MiFobio 2012 – 2014 – 2016

Commercially available!

See their website for interesting applications Several active groups in the world (Korea, Poland, Taïwan, France, Germany, Italy...). Workshop MiFobio 2018

Applications http://nanolive.ch

cellular morphological changes induced by drug treatment

nanodiamonds internalization & 3D distribution in living cells

Applications http://nanolive.ch

Fission yeast (Schizosaccharomyces pombe) during division

Fibroblast reticular cell seeded on glass nanopillars

Applications http://www.tomocube.com

Tomography by Wavelength Variation

- No moving part
- Low gain in resolution
- Wide spectrum coherent sources ?

Phase Contrast Microscopy

www.microscopyu.com

Nobel Prize 1953 Physics Frits (Frederik) Zernike

"for his demonstration of the phase contrast method, especially for his invention of the phase contrast microscope".

White-light diffraction tomography

- + Z-scanning
- + data processing

White-light diffraction tomography of unlabelled live cells

T. Kim, et al. Nature Photonics 8, p. 256 (2014)

Commercially available!

See their website for interesting applications

Applications http://phioptics.com

Spiculated RBC

HT29 cell

Live neuron

Tomography / Fluorescence Comparison

Snowdrop pollen

Tomography

red: index n > index immersion medium

Fluorescence

Non-Isotropic Resolution

Absorption

Index of refraction

Autofluorescence

Tomography by Specimen Rotation

- Sample rotation may be difficult
- low NA => quasi-isotropic, but rather low resolution

Tomography by Specimen Rotation

Problems and Solutions in 3-D
Analysis of Phase Biological Objects
by Optical Diffraction Tomography
M. Kujawińska, et al.,

Int. J. Optomechatronics 8, p. 357 (2014)

Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers

M. Habaza, et al., Opt. Lett. 40, p. 1881 (2015)

Tomography by Specimen Rotation

Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation

M. Habaza, *et al.*, Adv. Sci., paper 1600205 (2016)

Tomographic flow cytometry by digital holography

F. Merola, et al., Light: Science & Applications 6, paper e16241 (2017)

Missing Frequencies

Recorded frequencies Missing part "Missing apple core"

"Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space"

S. Vertu, et al., Centr. Eur. J. of Phys. 7, p. 22 (2009)

Multiview Tomography

Multiview Tomography

Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation

S. Vertu, et al., Centr. Eur. J. of Phys. 9, p. 969 (2011)

Towards High NA, IsoResolution

 λ =633nm or 475nm, NA_{obj}=1.4, NA_{cond}=1.4

Fast acquisition (less than 10s for 1 object orientation / 400 illuminations)
Real-time reconstruction for each object orientation (1 volume of data each 3s)₃₉

Optical Fiber Tip (λ =475 nm R_{predicted}=95nm)

Zeolith microcrystal

Betula Pollen

Betula Pollen

Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution

B. Vinoth, et al., Scientific Reports 8, 5943 (2018)

Low-cost microscopy/tomography

Aydogan Ozcan's group **UCLA**

PNAS 1015638108 (2011)

Low-cost microscopy/tomography

Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy

A. Berdeu, et al., Appl. Opt. 56, p. 3939 (2017)

Drawback: Speed

Fast 1-D Scanning

"Tomographic phase microscopy"

W. Choi, et al., Nat. Meth. 4, p. 717 (2007)

1-D Scanning

"The overall shape takes a form of what we might call a "peanut."

"Image formation in holographic tomography"

S. Shan Kou, and C. J. R. Sheppard, Opt. Lett. 33, p. 2362 (2008)

Acquisition Reconstruction Display

GPU Reconstruction

Nvidia Tesla C2075, Cuda, FFTW: 3.5 3D images/s

Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples

J. Bailleul, *et al.*, Opt. Comm. **422**, p. 28 (2018)

Other possible approach

3D live cell imaging

Living COS-7 cell

OPD with spatially Incoh. Illum. + 3D deconvolution

- √ 3D shape of the cell
- ✓ Fast acquisition, compatible with live imaging (just a z-stack!)

Fixed tissue imaging (1/2)

✓ Cell layer visualization without labeling

Fixed tissue imaging (2/2)

✓ Thin structures visible even after few tens of microns

Multimode Imaging

Conclusion

Unprepared samples => use of a new kind of information <n>

High resolution imaging: λ /(3.5NA) lateral experimentally demonstrated

Challenges:

- RT acquisition/reconstruction/display
- polarimetric TDM
- "true" superresolution?