Limits and Pitfalls of Deep Learning for biological imaging

Loïc A. Royer @loicaroyer

The Ground Truth Problem The Training Problem The Overfitting Problem The Adversarial Fragility Problem The Hallucination Problem The Cheating Problem The Black Box Problem The 'not-that-smart' Problem

The Ground Truth Problem The Training Problem The Overfitting Problem The Adversarial Fragility Problem The Hallucination Problem The Cheating Problem The Black Box Problem The 'not-that-smart' Problem

The Ground Truth Problem

Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

abcdefg...

中文王国...

a中b文c ...

Old english word

Chinmay Belthangady¹, & Loic A. Royer¹

¹Chan Zuckerberg Biohub, San Francisco, USA

Degraded image Witenagemot Withhodeuror Restored images 語は中に記事いる。 Witenagernol Witenagemot Ground truth

Belthangady & Royer, Nature Methods, 2019

Belthangady & Royer, Nature Methods, 2019

Training datasets

abcdefg...

Training datasets

abcdefg...

abcdefg...

Training datasets

abcdefg...

abcdefg...

中文王国...

Training datasets

abcdefg...

abcdefg...

中文王国..

a中b文c

Old english word

Witenagemot

Withhodeuror

海洋用に配合いる

Witenagernol

Witenagemot

Degraded image

Restored images

Ground truth

Ideally, we would not need 'Ground Truth'

How Much Information is the Machine Given during Learning?

- "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - ► A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ► 10→10,000 bits per sample
- ► Self-Supervised Learning (cake génoise)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - ► Millions of bits per sample

Self Supervised Learning predict part from the whole

Self Supervised Learning predict part from the whole

Self Supervised Learning predict part from whole

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Image Denoising with self-supervised deep learning

Joshua Batson

Noise2Self: Blind Denoising by Self-Supervision, *Joshua Batson & Loic Royer*, ICML (2019) Noise2Void - Learning Denoising from Single Noisy Images, *Krull, Buchholz, Jug*, CVPR (2019)

Image Denoising with self-supervised deep learning

Joshua Batson

Noise2Self: Blind Denoising by Self-Supervision, *Joshua Batson & Loic Royer*, ICML (2019) Noise2Void - Learning Denoising from Single Noisy Images, *Krull, Buchholz, Jug*, CVPR (2019)

Self Supervised Learning

representations

(b) Crop and resize

Chen et al. arXiv 2020

Figure 2. A simple framework for contrastive learning of visual representations. Two separate data augmentation operators are sampled from the same family of augmentations ($t \sim \mathcal{T}$ and $t' \sim \mathcal{T}$) and applied to each data example to obtain two correlated views. A base encoder network $f(\cdot)$ and a projection head $g(\cdot)$ are trained to maximize agreement using a contrastive loss. After training is completed, we throw away the projection head $g(\cdot)$ and use encoder $f(\cdot)$ and representation h for downstream tasks.

Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization

D Hirofumi Kobayashi, Keith C. Cheveralls, Manuel D. Leonetti, Loic A. Royer doi: https://doi.org/10.1101/2021.03.29.437595

Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization

D Hirofumi Kobayashi, Keith C. Cheveralls, Manuel D. Leonetti, Loic A. Royer doi: https://doi.org/10.1101/2021.03.29.437595

- Vesicles
- Cytoplasm
- Chromatin
- Nucleoplasm
- Nucleolus
- Nucleus membrane
- Golgi
- ER
- Mitochondria
- Others

Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization

D Hirofumi Kobayashi, Keith C. Cheveralls, Manuel D. Leonetti, Loic A. Royer doi: https://doi.org/10.1101/2021.03.29.437595

- Vesicles
- Cytoplasm
- Chromatin
- Nucleoplasm
- Nucleolus
- Nucleus membrane
- Golgi
- ER
- Mitochondria
- Others

Our Approach latent space self-supervision

Our Approach latent space self-supervision

Our Approach latent space self-supervision

A New Map of Protein Sub-cellular Localisation

The Training Problem

The Complex Objective (Loss) of Deep Models a different output every time you train...

The Complex Objective (Loss) of Deep Models a different output every time you train...

The Complex Objective (Loss) of Deep Models a different output every time you train...

The Complex Objective (Loss) of Deep Models

a different output every time you train... way worse than that...

The Black Magic of Optimisation

How to choose algorithm and hyper-parameters?

The Black Magic of Optimisation

How to choose algorithm and hyper-parameters?

The Art of Neural Architecture Design and the loss landscape of neural networks

Li et al. NeurIPS 2018

The Art of Neural Architecture Design and the loss landscape of neural networks

The Overfitting Problem

Under- and Overfitting intuition

Under- and Overfitting

intuition

Under- and Overfitting

intuition

Under- and Overfitting bias versus variance

Under- and Overfitting bias versus variance

Overfitting solutions

Weight Regularisation

Early Stopping

Activity Regularisation

Dropout

Data Augmentation

Simplify Model

The Adversarial Fragility Problem

Adversarial Attacks

imperceptible noise turns panda into gibbon

=

"panda"

noise

"gibbon"

57.7% confidence

99.3% confidence

Human decision boundary

Adversarial Attacks

fooling face recognition with ugly glasses

Adversarial Attacks

this is not the stop sign you have been looking for

classifier input

classifier input

classifier output

classifier input

classifier output

Brown et al. NeurIPS 2017

classifier input

classifier output

0.8
0.6
0.4
0.2
0.0
toaster banana piggy_bank spaghetti_

Brown et al. NeurIPS 2017

The Hallucination Problem

all possible images

$$(2^{24})^{1024 \times 1024}$$

$$= 1000000...$$
7 million zeros

the solution?

Wang et al. IEEE TIP 2004

input

Isola et al. CVPR 2017

ground truth

input

Isola et al. CVPR 2017

pix2pix

ground truth

The Cheating Problem

Horse

Horse

Lapuschkin et al. PLoS One (2019)

Horse

Lapuschkin et al. PLoS One (2019)

Layer-wise Relevance Propagation (LRP) *Bach et al. (2015)*

satellite image map

The Black Box Problem

Layer 4

Zhang et al. AAAI 2018

conv-layers

Right... 'explained'

Explaining by 'Attribution'

Saliency Maps which pixels matter?

Sattarzadeh et al. arXiv 2020

Integrated gradients

Original image

Top label and score

Top label: reflex camera Score: 0.993755

Top label: fireboat Score: 0.999961

Top label: school bus Score: 0.997033

Sundararajan et al. arXiv 2017

Integrated gradients

Integrated gradients

The 'not that smart' Problem

Brendel & Bethge ICLR 2019

Brendel & Bethge ICLR 2019

Brendel & Bethge ICLR 2019

Brendel & Bethge ICLR 2019

Fraction of 'texture' decisions

Panel Discussion