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The Ground Truth Problem



Applications, Promises, and Pitfalls
of Deep Learning for Fluorescence
Image Reconstruction

Chinmay Belthangady®, & Loic A. Royer!

1 Chan Zuckerberg Biohub, San Francisco, USA
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Belthangady & Royer, Nature Methods, 2019
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Belthangady & Royer, Nature Methods, 2019
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|deally, we would not need ‘Ground Truth’



Y. LeCun

How Much Information is the Machine Given during Learning? [ <}

B

~

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

> A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

P Predicting human-supplied data
» 10—10,000 bits per sample

P Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos

» Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 59




Self Supervised Learning
predict part from the whole

whole
part



Self Supervised Learning
predict part from the whole

Chen et al. PMLR 2020



Self Supervised Learning
predict part from whole

>

Predict any part of the input from any
other part.

Predict the future from the past.

Predict the future from the recent past.

Predict the past from the present.
Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

« Past Future —

resent

Slide: LeCun




Image Denoising
with self-supervised deep learning

Noise2Self: Blind Denoising by Self-Supervision, Joshua Batson & Loic Royer, ICML (2019)
Noise2Void - Learning Denoising from Single Noisy Images, Krull, Buchholz, Jug, CVPR (2019)
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Self Supervised Learning
representations
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Chen et al. arXiv 2020
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t’ ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.



Self-Supervised Deep Learning Encodes High-Resolution Features of Protein
Subcellular Localization

Hirofumi Kobayashi, @2 Keith C. Cheveralls, 2 Manuel D. Leonetti, 2 Loic A. Royer
doi: https://doi.org/10.1101/2021.03.29.437595

1311 endogenously
labeled proteins
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Our Approach
latent space self-supervision




Our Approach
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A New Map of Protein Sub-cellular Localisation
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The Training Problem



The Complex Obijective (Loss) of Deep Models

1.0

convex objective

Ashwin Singh



The Complex Obijective (Loss) of Deep Models
a different output every time you train...
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The Complex Obijective (Loss) of Deep Models
a different output every time you train...

1.0 2

convex objective complex objective global minima

saddle point

Ashwin Singh



The Complex Obijective (Loss) of Deep Models

way worse than that...




The Black Magic of Optimisation
How to choose algorithm and hyper-parameters?

Alec Radford (twitter.com/alecrad)
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The Art of Neural Architecture Design
and the loss landscape of neural networks

without skip connections

Li et al. NeurlIPS 2018
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The Overfitting Problem



Under- and Overfitting
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Deep Learning, Gibson & Patterson
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Deep Learning, Gibson & Patterson



Under- and Overfitting
Intuition
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Under- and
Overtitting
bias versus
variance

Quantdare, Pablo Sdnchez
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Training error
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Under- and
Overtitting
bias versus

variance
Low High
Variance Variance "
Underfitting
High
Bias
Truth

Low
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Overtitting

AW,  Weight Regularisation arly Stopping
| | Activity Regularisation 0 ropout

Data Augmentation implify Model




The Adversarial Fragility Problem



Adversarial Attacks
imperceptible noise turns panda into gibbon

+.007 X

“nanda” noise “gibbon”

57.7% confidence 99.3% confidence

Goodfellow et al, ICLR 2015



Human decision boundary




Machine decision boundary Human decision boundary
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Adversarial Attacks

Sharif et al. CCS 2016



Adversarial Attacks

Eykholt et al. CVPR 2018



classifier input

Brown et al. NeurlPS 2017
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The Hallucination Problem



all possible images

 «— Yyour portrait

(224) 1024x1024

all pctures of cats 43 = 1000000...

7 million zeros
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lots of dimension here

>
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converged image

(best SSIM) Fundamental Problem

how to estimate how
close we are from
the solution?

initial
image

reference equal-MSE
Image hypersphere

converged image
(worst SSIM)

Wang et al. IEEE TIP 2004



ground truth

Isola et al. CVPR 2017



ground truth

Isola et al. CVPR 2017



The Cheating Problem



—  HoOrse

C Lothar Lenz
www pferdefotoarchiv de

Lapuschkin et al. PLoS One (2019)
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C Lothar Lenz
www pferdefoloarchivde

Lapuschkin et al. PLoS One (2019)

RO o
“‘W&f Jer i

R 2N é
oSl

Layer-wise Relevance Propégation (LRP)
Bach et al. (2015)



satellite image

Chu et al. NeurlIPS 2017

map



satellite image =~ == map =P satellite image

Chu et al. NeurlIPS 2017
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satellite image == map =P satellite image
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The Black Box Problem



Layer 1

EFFE ....I.

Zeiler et al. ECCV 2013
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Layer 3
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Zeiler et al. ECCV 2013



Layer 4

Zeiler et al. ECCV 2013



Layer 5

Zeiler et al. ECCV 2013
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‘ IF&pUt Featulre Maps  Explanatory Parts corresponding to
image  Of different graph each graph node
conv-layers

Zhang et al. AAAI 2018



Right...
‘explained’

Zhang et al. AAAI 2018



Explaining by ‘Attribution’



Saliency Maps

Simonyan arXiv 2013



Extremal Integrated
Input Image Grad-CAM Grad-CAM++  Perturbation Score-CAM Gradient

Sattarzadeh et al. arXiv 2020




Integrated

Sundararajan et al. arXiv 2017

Original image

rl S

Top label and score

3 -
Y_' J‘Jj Top label: reflex camera
Score: 0.993755

Top label: fireboat
Score: 0.999961

Top label: school bus

Score: 0.997033

Integrated gradients

Gradients at image




Integrated

& uninteresting gradients
SCore Interesting gradients

Intensity
o=

Scaled images

Sundararajan et al. arXiv 2017



Baseline Image

Ornginal Image

Integrated

IG Attribution Mask Onginal + IG Attribution Mask Overlay




The 'not that smart’ Problem



Brendel
& Bethge
ICLR 2019
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Geirhos et al. ICLR 2019



Geirhos et al. ICLR 2019

‘ GoogleNet

‘ AlexNet

B ResNet-50

Shape categories

Fraction of 'shape' decisions
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Panel Discussion



