Phase and index imaging for biologie

Pierre Bon – Olivier Haeberlé

MiFoBio 2021 Presqu'île de Giens - France, November 5-12, 2021

Intensity Microscopy

Dark-field
Oblique illumination
Rheinberg illumination
Hoffman modulation
Polarized microscopy
Phase contrast (Zernike)
Differential Phase Contrast (Nomarski)
Ultramicroscope (Siedentopf & Zsigmondy)

- :-) Some control of the illumination
- :-) A certain comprehension of the light specimen interaction phenomenon
- :-(Inherently 2-D

Phase Microscopy

:-(Usually, one records intensity only images

Gabor Holography
Phase Stepping Holography
Off-Axis Holography
Front Wave Analyser

=> One can (now easily) measure amplitude and phase of the diffracted field

Commercial DHM

Wavefront Analyser

P. Bon, et al., Opt. Expr. 17, p. 13080 (2009)

Suivi de cultures (DHM)

Living JIMT-1 cells, recording over 72 hours, 1 frame / 4 min Birgit Janicke – Phase Holographic Imaging

Holographic Microscopy

Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy

B. Rappaz, et al.,

Opt. Express 13 (23), 9361-9373 (2005)

Cartographie de surface

Electrophysiologie optique (DHM)

$$I_{GABA}(t) = rac{V_0}{arepsilon_{GABA}^*} rac{d}{dt} \left(rac{arphi_0}{arphi(t)}
ight)^{1/s-r}$$

"Simultaneous Optical Recording in Multiple Cells by Digital Holographic Microscopy of Chloride Current Associated to Activation of the Ligand-Gated Chloride Channel GABAA Receptor"

P. Jourdain, et al., Plos One **7**, e51041(2012)

Mesure de masse sèche (SLIM)

"Optical measurement of cycle-dependent cell growth" M. Mir, et al., PNAS 108, p. 13124 (2011)

Coherent Light Diffraction

Weakly diffracting/diffusing/absorbing object 1st Born approximation
The diffracted wave is interpreted as a part of the 3-D Fourier 3D transform of <n>

Semi-transparent object reconstruction from holographic data E. Wolf, Opt. Comm. 1, p. 153 (1969)

Holographic Miroscopy: Results

1 angle

Limited 3-D resolution

Profilometry

Integral measurements

Illumination Control: Consequences

A radical solution:

1 unique illumination direction!

Cellule CD34 - Image Georges Jung, Laboratoire d'Hématologie Centre Hospitalier Régional Emile Muller - Mulhouse

Limits of Label-free VS fluorescence

Sensitivity

→ Not a single molecule approach...

Resolution limit

→ Initial resolution = 50% of fluo. resolution

Selectivity/Specificity

→ How to identify and contrast a molecular type

Resolution limit

- Label-free = coherent process VS Fluo = <u>in</u>coherent process
 - → Phase imaging = usually interferometric → One illumination angle
 - \rightarrow PSF phase imaging = $1{,}22\lambda/NA$ VS PSF fluo. = $1{,}22\lambda/2NA$

Resolution enhancement

Aperture synthesis
 Multiplexing illumination angles

Bertrand *et al.*, High-resolution tomographic diffractive microscopy of biological samples, **J. Biophotonics**, 3(7), 2010

Incoherent illumination

Parthasarathy *et al.*, Quantitative phase imaging using a partitioned detection aperture, **Opt. Express**, 37(19), 2012

Bon *et al.*, Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination, **Opt. Express**, 22(7), 2014

Confocal illumination & structured illumination / structured refractive index modulation

Chowdhury & Izzat, Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging, **Biomed. Opt. Express**, 4(10), 2013

Liu et al., Quantitative phase-contrast confocal microscope, Opt. Express, 22(15), 2014

Tomography by Illumination Rotation

- Different angles of illumination ⇒ other object frequencies
- Large number of angles
- ⇒ Extended and filled frequency support
- Objective numerical aperture ⇒ Limitation of the detection angle
- Condenser numerical aperture ⇒ Limitation of the illumination angle

Tomographic Microscopy: Transmission

Holographic microscopy and diffractive microtomography of transparent samples, M. Debailleul, *et al.*, Meas. Sci. Technol. **19**, 074009 (2008)

Object Reconstruction

Holography / Tomography

Carbon Mesh

High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples

M. Debailleul, et al., Opt. Lett. 34, p. 79 (2009)

Tomography => Index of Refraction

Epithelial cells

Indice Real part

Indice Imaginary part

High resolution tomographic diffractive microscopy of biological samples

Tomography => Index of Refraction

Granulocytes

Refraction

4 μm

Absorption

False colour rendering:

Red: absorption Blue: refraction

Solutions de labo

First prototype

Fast Compact Setup MiFoBio 2014-2016

Compact Setup MiFoBio 2012

New System

Commercially available!

See their website for interesting applications Several active groups in the world (Korea, Poland, Taïwan, France, Germany, Italy...).

Applications http://nanolive.ch

cellular morphological changes induced by drug treatment

nanodiamonds internalization & 3D distribution in living cells

Applications http://nanolive.ch

Fission yeast (Schizosaccharomyces pombe) during division

Fibroblast reticular cell seeded on glass nanopillars

Applications http://nanolive.ch

Applications http://www.tomocube.com

Cell apoptosis

Bacterial growth

HeLa cell

Microalgae

Applications http://www.tomocube.com

White-light diffraction tomography

White-light diffraction tomography of unlabelled live cells

T. Kim, et al. Nature Photonics 8, p. 256 (2014)

Commercially available!

See their website for interesting applications

Applications http://phioptics.com

Spiculated RBC

HT29 cell

Applications http://phioptics.com

3D cell tomography with SLIM

Limits of Label-free VS fluorescence

Sensitivity

→ Not a single molecule approach...

Resolution limit

→ Initial resolution = 50% of fluo. resolution

Selectivity/Specificity

→ How to identify and contrast a molecular type

Sensitivity

Sensitivity enhancement?

• Signal = shot-noise limited → more photons! → alternative sensor

Hosseini *et al.*, Pushing phase and amplitude sensitivity limits in interferometric microscopy, **Optics Letters**, 41(7), 2016

Roose-Amsaleg *et al.*, Utilization of interferometric light microscopy for the rapid analysis of virus abundance in a river, **Research in microbiology**, 168(5), 2017

Dark field

Martinez-Marrades *et al.*, Stochastic 3D optical mapping by holographic localization of Brownian scatterers, **Opt. Express**, 22(23), 2014

Selectivity / sensitivity

• Signal ⇔ Refractive index variation ... not specific!

Selectivity / sensitivity enhancement

- Polarization → cytoskeleton, collagen...
- High refractive index / absorption / scattering probes (nano-diamond, Gold particle)
- Refractive index specific modulation

Spectroscopic Microtomography

Spectroscopic Microtomography in the Visible Wavelength Range Y. Sung, Physical Review Applied **10**, 054041 (2018)

Polarized Microtomography

Polarization-sensitive optical diffraction tomography

A. Saba, et al., Optica 8, 402 (2021)

Polarized Microtomography

Polarization-sensitive optical diffraction tomography A. Saba, et al., Optica 8, 402 (2021)

What's next???

Tomography / Fluorescence Comparison

Snowdrop pollen

Tomography

red: index n > index immersion medium

Fluorescence

Non-Isotropic Resolution

Absorption

Index of refraction

Z L

Autofluorescence

Tomography by Specimen Rotation

- Sample rotation may be difficult
- low NA => quasi-isotropic, but rather low resolution

Tomography by Specimen Rotation

Problems and Solutions in 3-D
Analysis of Phase Biological Objects
by Optical Diffraction Tomography
M. Kujawińska, et al.,
Int. J. Optomechatronics 8, p. 357 (2014)

Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers

M. Habaza, et al., Opt. Lett. 40, p. 1881 (2015)

Tomography by Specimen Rotation

Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling **Using Dielectrophoretic Cell Rotation**

> M. Habaza, et al., Adv. Sci., paper 1600205 (2016)

Tomographic flow cytometry by digital holography

F. Merola, et al., Light: Science & Applications 6, paper e16241 (2017)

Missing Frequencies

Recorded frequencies Missing part "Missing apple core"

"Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space"

S. Vertu, et al., Centr. Eur. J. of Phys. 7, p. 22 (2009)

Multiview Tomography

Multiview Tomography

Improved and isotropic resolution in tomographic diffractive microscopy combining sample and illumination rotation

S. Vertu, et al., Centr. Eur. J. of Phys. 9, p. 969 (2011)

Towards High NA, IsoResolution

 λ =633nm or 475nm, NA_{obj}=1.4, NA_{cond}=1.4

Fast acquisition (less than 10s for 1 object orientation / 400 illuminations)
Real-time reconstruction for each object orientation (1 volume of data each 3s)₅₂

Optical Fiber Tip (λ =475 nm R_{predicted}=95nm)

Zeolith microcrystal

Betula Pollen

http://www.vcbio.science.ru.nl

Betula Pollen

Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution

B. Vinoth, et al., Scientific Reports 8, 5943 (2018)

Low-cost microscopy/tomography

Aydogan Ozcan's group UCLA

Lens-free optical tomographic microscope with a large imaging volume on a chip

S. O. Isikman, *et al.*, PNAS 1015638108 (2011)

Low-cost microscopy/tomography

Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy

A. Berdeu, et al., Appl. Opt. **56**, p. 3939 (2017)

Drawback: Speed

Fast 1-D Scanning

"Tomographic phase microscopy" W. Choi, et al., Nat. Meth. 4, p. 717 (2007)

1-D Scanning

"The overall shape takes a form of what we might call a "peanut."

"Image formation in holographic tomography"

S. Shan Kou, and C. J. R. Sheppard, Opt. Lett. 33, p. 2362 (2008)

Acquisition Reconstruction Display

GPU Reconstruction

Nvidia Tesla C2075, Cuda, FFTW: 3.5 3D images/s

Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples

J. Bailleul, et al., Opt. Comm. 422, p. 28 (2018)

Other possible approach

3D live cell imaging

Living COS-7 cell

OPD with spatially Incoh. Illum. + 3D deconvolution

- √ 3D shape of the cell
- ✓ Fast acquisition, compatible with live imaging (just a z-stack!)

Fixed tissue imaging (1/2)

✓ Cell layer visualization without labeling

Fixed tissue imaging (2/2)

✓ Thin structures visible even after few tens of microns

Multimode Imaging

(^2)

Conclusion

Unprepared samples => use of a new kind of information <n>

High resolution imaging: λ /(3.5NA) lateral experimentally demonstrated

Challenges:

- RT acquisition/reconstruction/display
- polarimetric TDM
- "true" superresolution?